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Cd2+ provokes an immediate production of inositol trisphosphate and the release of Ca2+ from internal stores in human fibroblasts and some other
mammalian cells. Ni2+, Co2+, Fe2+, and Mn2+ evoke the release of stored Ca2+, but are less potent than Cd2+ (apparent Ko05 = 40 nM). Zn2+ and
Cu2+ competitively inhibit Ca2+ release evoked by Cd2, without affecting Ca2+ release by hormones such as bradykinin. Zn2+ has the same appar-
ent Ki value (80-90 nM) towards the five agonist metals, which suggests that the metals interact with the same site. Many other divalent cations
neither released stored Ca2+ nor affected Cd2+-evoked Ca2+ release. The agonist metals appear to activate phospholipase C via a G protein rather
than a tyrosine kinase. The production of reactive oxygen species is probably not involved in Ca2+ release by the metals. Cd2+ and other stimuli that
raise cytosolic-free Ca2+ induce cyclic (AMP) production, apparently by activating a calmodulin-dependent adenylyl cyclase. We suggest that an
orphan receptor mediates the hormonelike responses to Cd2+ and the other agonist metals. The receptor is referred to as an orphan because its
physiological stimulus is unknown. Growth of the fibroblasts in high Zn2+ desensitizes them to the five agonist metals without affecting Ca2+
release by bradykinin or histamine. A several hour incubation in culture medium with normal Zn2+ fully restores responsiveness to the five active
metals. Growth in high Zn2+ appears to repress the synthesis of the putative orphan receptor because inhibitors of RNA or protein synthesis, or
asparagine-linked glycosylation, prevented the restoration of metal responsiveness. Experiments with lectins and neuraminidase support the view
that a cell surface sialoprotein mediates Cd2+ responsiveness. Cd2+ evokes rapid changes in 132P] incorporation by certain proteins, as would be
expected for the activation of a phospholipase C-coupled receptor. Cd2+ and the other metals that trigger hormonelike messenger production, also
induce protooncogenes. These observations have revealed a new target for certain metals which is extraordinary with respect to metal potency and
specificity. Additionally, the work reviewed here supports the view that certain metals can promote cell growth, which results in part from the fortu-
itous induction of hormonelike signals. - Environ Health Perspect 102(Suppl 3):181-189 (1994).
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Introduction

Cadmium and nickel are modern environ-
mental contaminants that are toxic and
carcinogenic (1-3). Industrial exposure,

food, and cigarette smoking are the major
sources of body cadmium and nickel (2).
Cd2+ in whole blood is 5 to 15 times
higher in smokers than in nonsmokers in
nonoccupationally exposed adults (4).
Cadmium avidly binds to polythiol groups
in proteins such as metallothionein as well
as zinc sites in metalloenzymes and tran-

scription factors (5-8). Although the sub-
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stitution of Cd2+ for Zn2+ in metalloen-
zymes and DNA-binding proteins may
produce a functional enzyme, Cd2+ has no
known biological role and is regarded as a
xenobiotic (1,5,6). The functions of
nickel are largely confined to enzyme sys-
tems of primordial organisms and their
close relatives (9). Ni + is a cofactor of
three bacterial enzymes-hydrogenases,
CO dehydrogenase, and methyl-CoM
reductase-as well as bacterial and plant
urease (9).

Carcinogenicity of Cadmium
and Nickel
Cadmium and nickel are carcinogenic in
laboratory animals (1-3). Occupational
exposure to nickel predisposes workers to
lung and nasal cancer (1). Exposure of rats
to an aerosol containing 25 pg/m3 CdCl2
produced a 50% incidence of lung tumors
(10). A single subcutaneous injection of 40
pmole/kg CdCl2 in rats produced a high
incidence of Leydig cell adenomas in the

testes, prostatic neoplasia, and sarcomas at
site of injection (11). Oral administration
of CdCl2 to rats also potently induced
tumors in the prostate, testes, and the
hematopoietic system (12). Cadmium and
nickel compounds are inactive or weakly
active in gene mutation assays (2,13,14).
Therefore, epigenetic mechanisms proba-
bly play a significant role in the carcino-
genicity of Cd2' and Ni2+, although the
mechanisms are not well understood.

In vitro treatment of fibroblasts or
prostatic epithelial cells with CdCl2 pro-
duced transformed cell lines that are
tumorigenic (15,16). Cultured skin fibro-
blasts from Indian muntjac are highly sen-
sitive to the toxic effects of Cd2+ (17).
Long-term exposure to low levels of Cd2+
produced transformed muntjac cells with
normal karyotypes that were 58-fold more
resistant to Cd2+ than the parental cells
(17). The development of resistance to
Cd2+ apparently occurs concurrently with
transformation.
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Figure 1. Diagram of transmembrane-signaling events and protooncogene induction via the orphan receptor trig-
gered by cadmium. The key features of the hypothesis are: a) a seven transmembrane domain receptor (upper left)
is coupled to an enzyme, phospholipase C (PLC), via an heterotrimeric GTP-binding protein composed of subunits
a, f, and y; b) two second messengers, inositol trisphosphate (OP3( and diacylglycerol (DAG) are produced simulta-
neously by the hydrolysis of phosphatidylinositol bisphosphate (PIP2) when Cd2+ binds to a Zn2+ site in the external
domain of the receptor; c) IP3 opens an intracellular Ca channel which releases Ca from the endoplasmic reticulum;
and d) DAG activates protein kinase C (PKC) which phosphorylates an actin crosslinking protein called myristoy-
lated alanine-rich C-kinase substrate (MARCKS) and translocates from the cytoplasm to the plasma membrane.
The diagram depicts the activation of Ca/calmodulin (CaM) and mitogen-activated (MAP) protein kinases, which
occur in human fibroblasts stimulated with bradykinin or epidermal growth factor (99, 100). It is not yet known
whether orphan receptor stimuli affect these two kinases. Cd2, induces "immediate/early" protooncogenes (egr-1
and c-myc) (33; Smith, unpublished). The diagram shows the activation of Ca/CaM-activated adenylyl cyclase
(Type adenylyl cyclase), which apparently causes the cAMP increases produced by Cd2 , calcium ionophores, and
bradykinin in human dermal fibroblasts (53).

Transmembrane Signaling
and Cell Transformation
A variety of mitogenic stimuli (e.g., neu-

ropeptides and peptide growth factors) trig-
ger receptors that activate phospholipase C
(18-22). Phospholipase C activation con-

comitantly produces inositol trisphos-
phate (1P3), which releases stored Ca2 ,

and diacylglycerol (DAG), which activates
protein kinase C (PKC) as illustrated in
Figure 1. Heterotrimeric G proteins
belonging to the Gq class regulate the ,B
isoform of phospholipase C (23).
Malignant transformation by several dif-
ferent oncogenes causes alterations in the
phosphoinositide pathway (24,25). One
mechanism responsible for the trans-

formed phenotype may be persistently ele-
vated levels of diacylglycerol (25,26).
Expression of a continuously activated
mutant form of the a subunit of Gq trans-

forms NIH3T3 cells (27).
We have proposed that Cd2+ may pro-

mote tumor development by fortuitously
triggering an orphan receptor (28). Figure

1 summarizes the key features of the
orphan receptor hypothesis. An orphan
receptor is one for which the physiological
stimulus is unknown. The putative
orphan receptor was provisionally called a
"Cd2+ receptor" because Cd2+ was the
most potent stimulus known (28),
although it was realized that Cd2+ was a
xenobiotic and therefore not the physio-
logical stimulus. Whether or not the site
of action of the metals is a cell surface
orphan receptor, the hormone-like
responses to the metals appear to be
unprecedented and remarkable with
respect to metal potency and specificity.
Here we review the evidence that Cd +
fortuitously activates an orphan receptor
which raises cytosolic free Ca2+ ([Ca +]j)
and activates certain protein kinases,
including PKC, the target of tumor pro-
moting phorbol esters (22). Additionally,
we discuss recent observations on the role
of the orphan receptor in protooncogene
induction by cadmium.
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Figure 2. Growth in high Zn2+ reversibly abolishes the
[Ca2+ iresponse to Cd2+ without affecting the
response to bradykinin. Modified from Smith et al.
(55). Cd 2+ (1 pM) or 0.1 pM bradykinin (BK) was added
as indicated by the arrows. The other interruptions of
the tracings were caused by the time required to
remove and replace the physiological salts solution
with fresh solution. From Smith et al. (55); reproduced
with permission of the publisher.

Cadmium Triggers Hormone-
like Responses in Certain
Mammalian Cells
While investigating Ca2+ release from
intracellular stores that was evoked by the
replacement of extracellular Na+ (29),
Dwyer tested Co2+ and Ni2+ as potential
inhibitors. Co2+ or Ni2+ alone produced an
immediate and marked release of stored
Ca2+ (29). Subsequently, a variety of
monovalent and divalent cations were sur-
veyed to see if they provoked Ca2+ release
from internal stores. Cd2+ was observed to
be the most potent (apparent Ko.5 of 40
nM) among the 5 metals (Cd2+, Co2+,
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Figure 3. Growth in high Zn2+ almost abolishes
[3Hlinositol phosphate production by Cd2, without
affecting the response to bradykinin. Human fibro-
blasts were grown in culture medium without (control
cells) or with (zinc grown cells) 100 pM Zn2+ and
labeled with [3Hlinositol as described (55). The indi-
cated cultures were incubated for 1 min with 10 pM
Cd2+ or 40 nM bradykinin. Growth in high Zn2+ had no
effect on the basal levels of any of the [3H]inositol
phosphates. GPlns, glycerolphosphorylinositol; InsP,
inositol monophosphate; InsP2, inositol bisphosphate;
InsP3, inositol trisphosphate. From Smith et al. (55);
reproduced with permission of the publisher.
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Ni2+, Fe2+, Mn2+) that mobilized stored
Ca2+, which was determined by assaying
45Ca2+ efflux at 10-sec intervals (28-30).
Ni2+, Co2+, Fe2+, and Mn2+ are 6, 7, 17,
and 380 times less potent than Cd2+
(28,30; Smith, unpublished). Zn2+ and
Cu2+ competitively inhibit Ca2+ release
evoked by Cd2+ with apparent Ki values of
80 and 100 nM, respectively. Zn2+ has the
same apparent Ki value (80 to 90 nM)
towards each of the five "agonist" metals,
(Smith, unpublished data). Therefore, the
metals appear to bind to the same site.
Many other divalent metals including
Ca2+, Mg2+ Ba2+, Sr2+, Be2+, and Pd2+ nei-
ther release stored Ca2+ nor inhibit Ca2+
release evoked by Cd2+ (28-30). Addition-
ally several monovalent cations had no
effect on Ca2+ release.

The potency order of the "agonist" and
"antagonist" metals is similar to the Irving-
Williams stability order (Cu2 > Cd2 >
Zn2+> Ni2+> Co2+ > Fe2+> Mn2+) for the
coordination of divalent metals by com-
pounds containing both nitrogen and oxy-
gen donors (9). Notably, the relative
potencies of the metals span a 400-fold
range from Cd2+ to Mn2+ as indicated
above, which is similar to the range of the
stability constants of the metals for model
compounds containing both amino and
carboxyl groups (9).

Cd2+ and the other four active metals
also evoke Ca2+ release in human neurob-
lastoma cells and dog coronary endothelial
cells (30,31). The potency order of the
metals in the neuroblastoma and endothe-
lial cells is the same as in human dermal
fibroblasts (28-31). Additionally, Cd2+
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Figure 4. Growth in high zinc selectively and reversibly desensitizes fibroblasts to cadmium. Depiction of a mech-
anism by which growth in high zinc may selectively and reversibly desensitize human fibroblasts to cadmium and
other stimuli of the putative orphan receptor.

evokes the release of stored Ca2' in human
lung fibroblasts and human aortic and
intestinal smooth muscle cells (31). Cd2,
fails to release stored Ca2, in rat aortic
myocytes, rat skin fibroblasts, and human
A431 cells (31). The target of Cd2+, a
putative orphan receptor, may have wide-
spread significance in mammals because it
occurs in different cell types and species.

[Ca2+Ji and IP3 Increases
Produced by Cd2+ and
Other Metals
Cd2+ evoked similar several-fold increases
in [Ca2+] in human fibroblasts and coro-
nary endothelial cells (28,30). Moreover,
Cd2+ produces a [Ca2+]i spike similarly to
bradykinin rather than a hyperbolic rise in
[Ca2+]i (Figures 2, 5). The [Ca2+] i spike is
largely caused by the release of stored Ca2+
because Cd2+ evoked similar spikes in the
presence and absence of extracellular Ca2+
(28,30). A prior incubation with
bradykinin, which depletes the IP3-sensi-
tive Ca2+ store, abolished the effect of Cd2+
on [Ca2+]i (28). The initial spike produced
by Cd2+ is followed by a sustained [Ca2+],
increase, which is dependent on external
Ca2+ and probably is caused by Ca2+ influx
(28,30).

[Ca2+] was determined on monolayers
of fura-2-loaded cells (28,30). Fura-2 has a
Kd for Cd2+ which is greater than 10-12 M
(32), and - 105-fold greater than the Kd of
fura-2 for Ca2+. Although Cd2+ shifts the
excitation spectrum of fura-2 similarly to
Ca2+ (28,32), Cd2+ would not be expected
to dissociate from fura-2 during the time of
the Ca2+ measurements. Accordingly, Cd2+
accumulation by the cells would produce a
sustained shift in the excitation spectrum
of fura-2. Such a sustained spectral change
is produced by incubating the cells with
millimolar Cd2+ (28). In contrast to Cd2+,
Fe2+ quenches the fluorescence of fura-2.
Fe2+, however, produces a [Ca2+i spike
similarly to Cd2+ (28).

The addition of 5 or 10 IM Zn2+ just
prior to 1 jiM Cd2+ prevented Cd2+ from
increasing [Ca2+]i without affecting the
[Ca2+]i response to hormones such as
bradykinin (28,33). Rinsing the cells with
a physiologic salt solution fully restored the
[Ca2+]i response to a subsequent addition
of Cd2+ (28,33). The rapid reversibility
inhibition by Zn2+ is consistent with the
competitive mechanism of Zn2+ inhibition
discussed above.

Cd2+ and the other active metals evoke
net Ca2' efflux similarly to bradykinin or
angiotensin (34,35). The net Ca2+ efflux is
probably caused by the plasma membrane
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Figure 5. Wheat germ agglutinin (WGA) inhibits the [Ca2+] response to Cd2+, and chitotriose reverses the inhibi-
tion. The cover glasses of fibroblasts were loaded with fura-2 and incubated for 30 min in the absence panel (A) or
presence panels (B and C) of 50 pg/ml WGA. Then the cover glasses were incubated for 4 min without panels (A
and B) or with 200 pg/ml chitotriose. The horizontal bars show the duration of the incubation of the cells with 0.1
pM Cd 2+ or 40 nM bradykinin (BK). (39; reproduced with permission of the publisher).

Ca2` ATPase of human fibroblasts (28,
34). The endoplasmic reticulum probably
does not rapidly reaccumulate the released
Ca2` because of the prolonged active state

of the IP3-gated Ca2+ channel. Verbost and
coworkers have shown that Cd2+ inhibits

the Ca2+ ATPase of inside out red cells by
binding to a site in its cytoplasmic domain
(36). The fact that Cd2` produces a net

decrease in the total Ca2+ content of
fibroblasts indicates that Cd2+ neither
inhibits the plasma membrane Ca2+
ATPase nor markedly increases Ca2+ diffu-
sion down its several thousand fold electro-
chemical gradient.

IP3 probably causes Ca2+ release evoked
by Cd2+ and the other metals that trigger
the release of stored Ca2+. Cd2+ (5 pM)
increased [3H]IP3 3- to 4-fold in 15 sec

(Figure 3) (28). A 1-min incubation with
20 pM Fe2+ or Co2+ increased [3H]IP3 3-
and 5 fold, respectively (28). Zn2+ abol-
ished the increases in [3H]IP3 produced by
Cd2+ or Fe2+. The [3H]IP3 data agree well
with the Ca2+ mobilization data with
respect to agonist and antagonist metal
specificity.

Evidence that Reactive
Oxygen Species Are Not
Involved in the Ca2+-
Mobilizing Response to Cd2+
Oxidative stress is known to increase
[Ca2+], in some mammalian cells (37).
Initially we considered the production of
reactive oxygen species to be an attractive
mechanism of Ca2+ mobilization evoked
by Cd2+ and the other active metals. The
following observations, however, indicated
that the production of reactive oxygen is

not involved in the release of stored Ca2+
by the metals. First, production of reactive
oxygen species by xanthine oxidase or addi-
tion of H202 (0.11 mM) failed to release

stored Ca2+ in human fibroblasts (28).
Second, agents that quench reactive oxygen

(superoxide dismutase, mannitol) or

antioxidants (butylated hydroxyanisole or

butylated hydroxytoluene) had no effect on
Ca2+ release evoked by Cd2+ or Fe2+ (28).
Trump and coworkers (38) have reported
that [Ca2+]i increases in renal epithelial
cells play a role protooncogene induction
by oxidative stress. The role of reactive
oxygen species in protooncogene induction
by Cd2+ has not yet been addressed
in human fibroblasts, although, as indi-
cated below, protooncogene induction cor-

relates with the Ca2+-mobilizing response

to the metals.

bo
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Cd2+ AM at an External site

The following observations suggest that the
"agonist" and "antagonist" metals trigger
the release of stored Ca2+ by binding to an

external site on the cell surface. First, there
was no detectable lag between the addition
of 0.1 pM CdCl2 and the [Ca2+]i increase
as might be expected for an external site of
action (28,30,39). Second, loading the
cells with a heavy metal chelator
(N,N,N,N'tetrakis-(2-pyridylmethyl)-eth-
ylenediamine) did not delay the onset or

decrease the extent of Cd2+-evoked 45Ca2+
efflux (28,30). Third, no intracellular
Cd2+ or Zn2+ was detected with fura-2
(28,30), whose fluorescence is exquisitely
sensitive to these metals (28,32,40).
Fourth, as described below, a cell surface
sialoprotein appears to mediate metal
responsiveness (40,41). It is unlikely that
Cd2+ and the other metals that evoke the
release of stored Ca2+ directly activate
phospholipase C. Cd2+ potently inhibits
one isoform of phospholipase C and
has no effect on another isoform (42).
Furthermore, phospholipase C is an intra-
cellular enzyme which does not span the
plasma membrane (43).

Cadmium Activates Protein
Kinase C
We have observed that a 2 min incubation
of human dermal fibroblasts with 1 pM
CdCI2 increased the incorporation of [32p]
into myristoylated alanine-rich C-kinase

2
C
°

egrl

-actin

Figure 6. Induction of c-myc and egr-1 by Cd2+, platelet-derived growth factor (PDGF), fetal bovine serum (FBS), or
phorbol myristate acetate (PMA). Human fibroblasts were incubated in a physiologic salt solution containing glu-
cose (28) for 1 hr before adding 2 pM CdCI2, 10 ng/ml PDGF, 10% (v/v) FBS, or 0.1 pM PMA. Two hr later, total
RNA was extracted and size fractionated on an agarose-formaldehyde gel. The RNA was transferred to a nylon
membrane and hybridized to a c-myc cDNA probe that was [32p1 labeled by the Klenow large fragment of DNA
polymerase primed with random hexamers. The membrane was stripped and reprobed for ,-actin as a control for
RNA quantity and quality.
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Agonists: Cd2 > Co2? > Ni2 > Fe2->Mn> .

K,, Cd2 = 40 nM
Antagonists: Zn2. = Cu2.; apparent K, = 80 - 100 nM
Second messengers: IP, and DAG
Pnmary effector: phospholipase C

Cell types that express the receptor:
human skin and lung fibroblasts
human aortic and intestinal smooth muscle cells
human neuroblastoma cells
canine ooronary endothelial cells and others

Figure 7. Key features of a putative orphan receptor
that is activated by cadmium and inhibited by zinc.

substrate (MARCKS) as determined by
immunoprecipitation and two-dimensional
gel electrophoresis (Chen and Smith,
unpublished data). The phosphorylation of
MARCKS, an actin cross-linking protein
(44), is a prominent and widespread
response of mammalian cells to mitogenic
stimuli (18,45). The increase in MARCKS
phosphorylation evoked by Cd2+ was simi-
lar to that produced by phorbol myristate
acetate (PMA) or bradykinin. In contrast
to Cd2 , ZnCl2 did not affect MARCKS
phosphorylation. These findings indicate
that Cd2+ activates PKC in vivo because
MARCKS is known to be a specific sub-
strate of PKC in human fibroblasts
(46,47). Presumably, PKC is activated
by DAG produced by bradykinin or stimu-
lation of the putative orphan receptor
by Cd2 .

PKC has a Zn2+ binding domain (48),
and Zn2+ apparently modulates the interac-
tion of the kinase with the plasma mem-
brane (49,50). A 1-hr incubation of mouse
fibroblasts with 50 pM Cd2+ had no effect
on PKC activity, but it potentiated the
association of PMA-activated PKC with
the nucleus (51). Cd2+ does not evoke
Ca2+ release in mouse fibroblasts (Swiss
3T3 cells) (Smith, unpublished data). The
influence of Cd2+ on the association of
PMA-activated PKC with the nucleus of
mouse fibroblasts appears to be mechanisti-
cally unrelated to the activation of PKC by
Cd in human fibroblasts.

Cadmium Increases Cyclic
AMP Production
Bradykinin evokes cyclic AMP (cAMP)
production in human fibroblasts (52). In
these cells, CdCl2 (2 pM) increases cAMP
production similarly to bradykinin (53).
Ni2+ and Fe2+ also increased cAMP,
whereas Zn2+ did not. Zn2+ blocked the
effect of Cd2+, but not that of bradykinin,
on cAMP production (53). Additionally,
growth of the cells in high Zn2+ reversibly
abolished cAMP production by Cd2+ with-
out affecting the bradykinin response (53).

Growth in high Zn2+ appears to selectively
and reversibly repress the synthesis of the
orphan receptor (see the next section).
The metal specificity of cAMP production
is the same as the metal specificity
of Ca2+ mobilization. Calcium ionophores
(A23187 or ionomycin) also markedly
increase cAMP production. Raising [Ca2+]i
may increase cAMP in human fibroblasts
via the Ca2+-calmodulin activated (Type I)
adenylyl cyclase as depicted in Figure 1
(54), although the expression of the Type
I cyclase has not yet been directly demon-
strated in these cells. By contrast to human
fibroblasts, Cd2+ has no effect on cAMP in
dog coronary endothelial cells, although
Cd2+ raises [Ca2+]i in these cells (53).
Other stimuli that raise [Ca2+]i in the
endothelial cells also had no affect on
cAMP, suggesting that they lack the Type I
adenylyl cyclase.

Selective Desensitization of
Fibroblasts to Cd2+ and Other
Stimuli of the Putative
Orphan Receptor
Growth of human fibroblasts in culture
medium containing 100 1iM Zn2+ selec-
tively and reversibly desensitizes them to
Cd2+ (55). Note that the desensitization
produced by growth in high Zn2+ is mech-
anistically distinct from competitive inhibi-
tion by Zn2+. Removing the Zn2+
immediately reverses competitive inhibi-
tion; however, a 10-hr incubation in cul-
ture medium is required to restore Cd2+
responsiveness to cells that have been
grown in high Zn2+ (55). Figure 4 depicts
a plausible mechanism that may account
for the desensitization-repression of the
synthesis of the putative orphan receptor.
Growth in high Zn2+ reversibly abolished
the [Ca2+] response to Cd2+ without affect-
ing the [Ca2+]i response to bradykinin
(Figure 4) (55 ). 45Ca2+ efflux and
[3H]inositol phosphate determinations also
showed that growth in high Zn2+ reversibly
and selectively desensitized the cells to
Cd2+ (55). Growth in high Zn2+ almost
abolished Cd2+-evoked production of
[3H]inositol mono-, bis-, and trisphos-
phate and had no effect on bradykinin-
evoked [3H]inositol phosphate production
(Figure 3) (55). Growth in high Zn2+
nearly prevented the stimulation of 45Ca2+
efflux by Cd2+ and had no effect on the
stimulation of efflux by bradykinin or hist-
amine (55). The half-time for the disap-
pearance of Cd2+ responsiveness after
adding 100 liM Zn2+ was 17 hr (55).

Inhibition of RNA or protein synthesis
with actinomycin D or cycloheximide, or

asparagine-linked glycosylation with tuni-
camycin (56) prevented the restoration of
Cd2' responsiveness. Notably, tunicamycin
B1 blocked the restoration of Cd2' respon-
siveness at 0.1 pg/ml, which only slightly
affected leucine incorporation into protein
(Chen and Smith, unpublished data).
Brefeldin A, which reversibly and selec-
tively disrupts Golgi stacks and prevents
post-translational processing of nascent
peptides (57,58), blocked the restoration
of Cd2' responsiveness (41). Half-maximal
inhibition of the restoration of Cd2+
responsiveness occurred at -10 ng/ml
brefeldin A. The subsequent removal of
brefeldin A and incubation in culture
medium for 8 hr or more fully restored
Cd2' responsiveness. Adding Zn2+ back to
the culture medium at the time of
brefeldin A removal prevented the restora-
tion of Cd2+ responsiveness (41). These
findings suggest that asparagine-linked gly-
cosylation is required for the restoration of
Cd2' responsiveness to cells that have been
grown in high Zn2+.

Zn2+ transiently induces metallo
thionein and heat shock proteins in mam-
malian cells (59-61). It seems unlikely
that these proteins are responsible for
desensitizing the cells to Cd2+ and the
other stimuli of the putative orphan recep-
tor (55), although this possibility has not
been excluded.

A Zn2+ Site May Mediate the
Hormonelike Responses
We hypothesize that Cd2+ activates a puta-
tive orphan receptor by binding to a site
that is normally occupied by Zn2+. Total
Zn2+ in plasma ranges from 10 to 20 pM
Zn2+ in adults (62). Most of the Zn2+ is
loosely bound to plasma proteins, therefore,
free Zn2+ may be 0.2 to 1 pM. Because the
apparent affinity of the metal site for Zn2+
is -0.1 pM, based on its Ki for metal-
evoked Ca2+ release, the site would be occu-
pied by Zn2+ at the levels present in plasma.
Recall that Zn2+ does not elicit hormone-
like responses, but rather competitively
inhibits those evoked by Cd2+ and the other
metals. Therefore, we speculate that Zn2+
plays a role in the binding of the physio-
logic (unknown) stimulus or in receptor
internalization or cycling.

There does not appear to be any prece-
dent for the occurrence of a Zn2+ site in
the external domain of a cell surface recep-
tor, although some cytoplasmic receptors
(e.g., estrogen and glucocorticoid recep-
tors) have Zn2+ finger motifs (63). Human
growth hormone contains three ligands
that coordinate Zn2+, which forms a dimer
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that is stabilized by the metal (64).
Additionally, Zn2+ in the 10 to 50 1iM
range stabilizes the binding of human
growth hormone to the human prolactin
receptor (65), which contributes one of
the four ligands that coordinate the metal.
Although the physiological significance of
the interaction between growth hormone
and the prolactin receptor is unclear, the
hormone-receptor "zinc sandwich" is a
model system in which Zn2+ modulates the
binding of a polypeptide hormone to a
nonphysiologic receptor. The receptors for
prolactin and growth hormone do not have
a high affinity site for Zn2+ or other metals
(64,65). Therefore, these receptors do
not mediate the hormonelike responses
to Cd2+.

Two lines of evidence suggest that the
metals interact with histidyl residues. First,
decreasing extracellular, not intracellular,
pH induces [3H]IP3 production and Ca2+
release in the same cell types that respond
to Cd2+ (31). Moreover, Zn2+ desensitizes
fibroblasts and endothelial cells to a
decrease in external pH as well as to Cd2+
without affecting responsiveness to Ca2+-
mobilizing hormones (30,55). The imida-
zole group of histidine (pKa 6-7) is the
principle functional group with a pKa near
the external pH (6.4) which half-maxi-
mally induced Ca2+ release from internal
stores (30,31). Histidine is the most com-
mon amino acid in Zn2+ sites (5). Second,
dye-sensitized production of singlet oxygen
almost abolished Ca2+ mobilization evoked
by a decrease in external pH as well as
Cd2+ and the other agonist metals without
affecting Ca2' release evoked by bradykinin
or thrombin (66). Histidine is the most
sensitive amino acid to photooxidation.

The Putative Orphan Receptor
Is a Plasma Membrane
Sialoprotein
Cell-surface receptors for hormones usually
contain oligosaccharides, which are
attached to asparagine residues in the
external domain of the receptor (67-69).
Cell-agglutinating, sugar-specific lectins
bind the N-linked oligosaccharides of hor-
mone receptors (67,70-73). Chen (39)
screened a variety of lectins for an effect
on Cd2+-evoked Ca2+ mobilization. She
found that wheat germ agglutinin (WGA)
markedly inhibited the [Ca2+]i and 45Ca2+
efflux responses to Cd2+ (Figure 5) (41).
One-tenth micromolar WGA half-maxi-
mally inhibited Cd2+-stimulated 45Ca2+
efflux. Extensive rinsing with a physio-
logic salt solution failed to reverse the
inhibition of Cd2+-evoked Ca2+ release. A

brief incubation with N,N,N"-triacetyl-
chitotriose, however, completely reversed
the inhibition by WGA (Figure 5) (39).
Chitotriose has a high affinity for WGA
and displaced >90% of fluorescein-WGA
that was bound to the cells. WGA neither
bound '09Cd2+ nor affected '09Cd2+
uptake by the cells (39). WGA binds both
N-acetylglucosamine and sialic acid.
Succinylated WGA, which binds only N-
acetylglucosamine, had no effect on Cd2+_
evoked Ca2+ release (39). These findings
indicate that WGA reversibly inhibits
Cd2+-evoked Ca2+ release by binding to
the sialic acid in the external domain of
cell-surface protein.

Experiments with neuraminidase have
provided further evidence that the Cd2+
receptor is a cell-surface sialoprotein.
Incubating the cells with neuraminidase
(0.075 /ml) decreased the binding of fluo-
rescein-WGA to the cells by -60%
(Chen and Smith, unpublished data).
Notably the treatment had no effect on
the stimulation of 45Ca2+ efflux by 0.2
PM Cd2+, but it markedly decreased the
inhibition of Cd2+-stimulated efflux by
WGA (41).

Genistein Blocks the [Ca2+]iResponse to Platelet-
derived Growth Factor
(PDGF) but Not to Cd2+ or
Bradykinin
The isoflavone genistein selectively
inhibits tyrosine kinases, such as those of
the receptors for epidermal growth factor
and PDGF (74,75). The PDGF receptor
kinase activates phospholipase C-yl by
phosphorylating certain tyrosine residues
(76,77). Hill et al. (75) showed that genis-
tein abolished the [Ca2+]i response to
PDGF without affecting the [Ca2+]i
responses to thrombin, phenylephrine, or
ATP. In constrast to PDGF, the receptors
for the latter compounds and bradykinin
are coupled to phospholipase C via G pro-
teins (78). We observed that 40 pM genis-
tein almost abolished the [Ca2+]i response
to PDGF, but only slightly affected the
[Ca2+]i responses to Cd2+ or bradykinin
(79,80). The relative insensitivity of the
Cd2+ and bradykinin responses to genis-
tein suggests that a G protein coupled
receptor, rather than one belonging to the
tyrosine kinase family, mediates Ca2+
release by Cd2+. Recent studies with her-
bimycin A, a tyrosine kinase inhibitor
(81), and staurosporine, which potently
inhibits various classes of protein kinases
(82), indicate that Ca2+ release by Cd2+ is
not dependent on protein kinase activity.

Protooncogene Induction
by Cadmium
Protooncogenes such as c-myc, c-jun, and
c-fos, are rapidly induced by proliferative
stimuli in a variety of diverse biological sys-

tems including regenerating liver and
human diploid fibroblasts (18,20,83-86).
Agonists of Ca2+-mobilizing receptors

also rapidly induce protooncogenes

(18,21,87), many ofwhich are regarded as

"immediate-early genes" because induction
occurs within minutes and is independent
of protein synthesis (88). Cd2+ has
recently been shown to increase c-jun and
c-myc transcripts in L6 myoblasts (89),
TIS genes in Swiss 3T3 cells (60), c-myc in
NRK cells (90), and c-myc, c-fos, and egr-1
in human fibroblasts (Figure 6) (33).

c-Fos and c-jun are components of the
AP-1 transcription factor, which mediates
nuclear events elicited by extracellular stim-
uli (91). Phorbol esters, growth factors,
and cytokines activate PKC and induce
AP-1 responsive gene expression (91). c-fos
and c-jun form a stable heterodimer via a

coiled-coil interaction known as a leucine
zipper. Phosphorylation regulates c-jun
both positively and negatively (92,93).
Thus, Cd2+ may induce protooncogenes by
activating certain protein kinases.

Role of the Orphan Receptor
in Protooncogene Induction
by Cadmium
Two paradigms have been used to evaluate
whether orphan receptor stimulation con-

tributes to protooncogene induction by
cadmium. First, the pharmacologic speci-
ficity of agonist and antagonist metals was

used to determine whether receptor activa-
tion correlated with protooncogene induc-
tion. Second, human fibroblasts were

grown in high Zn2+ to selectively and
reversibly desensitize them to orphan
receptor stimuli. Both approaches have
produced correlative data that support the
view that Cd2+ induces protooncogene
expression, at least in part, by activating
the calcium-mobilizing orphan receptor.

Briefly, the following observations
implicate the orphan receptor in pro-

tooncogene induction by Cd2+. Incubation
of human fibroblasts with 0.2 to 2 pM
CdCl2 markedly and transiently increased
c-myc and egr-1 expression as determined
by northern analysis (Figure 6) (33). Cd2+
-evoked c-myc expression was maximal at

2 hr and then gradually decreased to the
level of control cells (33). egr-1 expression
evoked by Cd2+ was also transient, but
preceded the increase in c-myc by about
30 min. Other metals that stimulate the
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putative orphan receptor, such as Co2+)
Ni2+, and Fe2+, also increased c-myc and
egr-1 transcripts. Zn2+ by itself had no
effect on c-myc expression, but prevented
c-myc induction by Cd2+ or Ni2+. Zn2+
had no effect on c-myc expression evoked
by fetal bovine serum (Pijuan and Smith,
unpublished data). It is noteworthy that
ferrous iron stimulates the growth of
human fibroblasts (Smith, unpublished
data) as well as HeLa and mouse
melanoma cells by a transferrin receptor-
independent mechanism (94,95). Further
work is needed to determine whether or
not the hormonelike responses evoked by
Fe2+ contribute to the mitogenic response.

Growth of the cells in high Zn2+
almost abolished the effect of Cd2 + (0.2 to
2 pM) on egr-1 and c-myc expression
(Pijuan and Smith, unpublished data).
Incubating the cells for 24 hr in the usual
culture medium (Dulbecco's modified
Eagle's medium containing 1% fetal

bovine serum) completely restored the
induction of egr-1 and c-myc by Cd2+.
Growth of the cells in high Zn2+ had little
or no effect on the induction of c-myc by
platelet-derived growth factor, forskolin,
or PMA. Thus, protooncogene induction
correlates with the metal specificity of the
orphan receptor as well as reversible
manipulation of orphan receptor respon-
siveness by varying the Zn2+ level of the
culture medium. Notably Zn2+ markedly
decreases tumor induction by Cd2+
(96-98). Further work is needed to evalu-
ate the roles of protein phosphorylation
and the putative orphan receptor in pro-
tooncogene induction and mitogenic
stimulation by divalent metals.

Conclusions
Figure 7 summarizes the principal fea-
tures of Ca2+ mobilization evoked by
Cd2+ and the other active metals. The
following are the criteria on which we

base the hypothesis that Cd2+ triggers
Ca2+ mobilization via an orphan rece-
tor: a) the target which mediates Ca +
release exhibits remarkable affinity and
specificity for divalent metals; b) the
active metals evoke an immediate and
marked production of IP3 and other sec-
ond messengers similarly to Ca2+ mobi-
lizing hormones; c) the second messenger
responses to the metals are cell-type spe-
cific; and d) the metals appear to act
at an external site via a sialoprotein
(28,30,31,39,41,55). Conclusive valida-
tion of the orphan receptor hypothesis
awaits the cloning and expression of the
putative receptor. The findings reviewed
here indicate that two carcinogenic
metals, Cd2+ and Ni2+, evoke hormone-
like responses in certain mammalian
cells, apparently by binding to a site on
the cell surface which exhibits extraordi-
nary metal affinity and specificity.
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